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Abstract
The purpose of this paper is to study the thermodynamic equilibrium properties of a collection
of non-interacting three-dimensional (3D) magnetically anisotropic nanoparticles in the light of
classical statistical physics. Pertaining to the angular dependence (α) of the magnetic field with
the anisotropy axis, energy landscape plots are obtained which reveal a continuous transition
from a double well to a single well for α = π

2 and show an asymmetric bistable shape for other
values of α. The present analysis is related to the interpretation of equilibrium magnetization
and static susceptibility of a nanomagnetic system as a function of external magnetic field, B ,
and temperature, T . The magnetization and susceptibility confirm the non-Langevin behaviour
of magneto-anisotropic monodomain particles. The susceptibility analysis establishes the
ferromagnetic-, antiferromagnetic- and paramagnetic-like coupling for various α. This study
reveals the essential role of magneto-anisotropic energy in the interpretation of the magnetic
behaviour of a collection of non-interacting single-domain nanoparticles.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Nanometre-sized magnetic particles have provoked immense
interest in both the scientific as well as the technological
arenas [1–5]. The development of intense fabrication
techniques helps in the preparation of nanoparticles with
satisfactory structural and chemical properties. The study and
analysis process gained acceleration due to the exaggerating
growth of measurement facilities like magnetic force
microscopy [6], micro-SQUIDS [7] and other magnetometry
measurements [8, 9]. Such techniques have led to the
measurement of the magnetization process of single magnetic
clusters in nanometre scales.

The magnetic moment of the nanoparticle consists of
the single-domain structure of ferromagnetic spins with a
large net spin, S (∼103–104) and hence it is called a
supermoment [10–12]. This spin couples with a large number
of environmental degrees of freedom of the host material.
Dynamical disturbances of the surrounding environment lead
to a rotational Brownian motion of the large spin surmounting
the magnetic-anisotropy potential barriers [13, 14]. In the
high barrier limit, the magnetic response of the non-interacting
single-domain particles follow the Néel relaxation process with

the relaxation time τ characterized by the relation

τ = τ0 exp
(�Ea

kBT

)
, (1)

where τ0 ∼ 10−10–10−13 s. Here τ0 is related to the intra-well
motion and the height of the energy barrier due to anisotropy
is �Ea = K V , where K is the anisotropy constant, V is the
particle volume, kB is the Boltzmann constant and T denotes
the absolute temperature. Depending on the relation of τ with
the measurement time tm, various interesting phenomena can
be observed. For τ � tm, the magnetic moment exhibits
the thermal equilibrium distribution of a paramagnet. For
τ � tm, the magnetic moment stays very close to the energy
minima as the reversal mechanism is blocked. For τ ∼
tm, nonequilibrium phenomena, i.e. magnetic relaxation, is
observed. In this work, all discussions are concentrated in the
thermal equilibrium regime where τ � tm. In this context, the
classical Stoner–Wohlfarth (SW) simplistic uniform rotation
model of a giant magnetic vector really provides an insightful
and realistic picture of magnetization reversal of single-domain
nanoparticles [15]. Here, we follow the same kind of
arguments as proposed by Stoner and Wohlfarth [15].
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The first study on the superparamagnetic behaviour
of an aligned assembly of uniaxially anisotropic particles
was made by West [16]. Further investigations regarding
possible configurations encountered in experiment was
made by Müller and Thurley [17]. Deviations from
classical Langevin theory were demonstrated by several
authors [18–23]. Madsen et al have studied the effect of
anisotropic energy on the interpretation of magnetization data
for antiferromagnetic particles [24]. Vargas et al depict
a second-order phase transition in non-interacting magneto-
anisotropic nanoparticles when the external magnetic field
is applied perpendicular to the anisotropy axis with the
order parameter being the magnetization parallel to the
field [25, 26]. Magneto-caloric properties of non-interacting
magneto-anisotropic nanoparticles have been studied in [29].

In this work, we investigate the effect of magneto-
anisotropic energy on the equilibrium thermodynamic prop-
erties of fine particles. By thermal equilibrium behaviour,
we mean that the measurement or observation time, tm, is
much larger than the characteristic relaxation time, τ , of the
system, i.e. we restrict our discussion to the regime tm � τ .
On the other hand, below a certain critical size (for Fe, it is
150 nm), it is not energetically favourable to form a domain
wall and the particle is said to be a monodomain or fine-
particle system [11]. Having explained the terms ‘equilibrium
properties’ and ‘fine particles’, we are now ready to describe
briefly our findings. Variations in the angle between the
anisotropy axis and the external magnetic field, α, and between
the former and the magnetic moment, θ , give deep insights
into the thermodynamic equilibrium properties of magneto-
anisotropic nanoparticles. We have extended the study of
Vargas et al [25, 26] by choosing the magnetic moment and
the anisotropy field vectors to be independent and arbitrary.
On the other hand, Vargas et al, restricted their study to the
particular case in which the external field is perpendicular
to the anisotropy axis. Also, we consider the particle size
distribution of nanoparticles rather than the case of identical
non-interacting particles as studied by Vargas et al [25, 26].
Thus the present study is much more realistic and close to the
experimental realizations [27, 4, 28].

The variation of the magnetization and susceptibility with
respect to external parameters like external field, B , and
temperature, T , is extensively studied. The effect of anisotropy
is evident from the magnetization versus reduced magnetic
field, ξ , curve. The variation of inverse susceptibility with
temperature for different angles, α, shows paramagnetic-,
ferromagnetic- and antiferromagnetic-like coupling which
clearly exhibits the effect of magneto-anisotropic energy on the
static susceptibility of nanomagnetic systems.

With the preceding background, the rest of this paper is
organized as follows. In section 2, we discuss the model
system and other basic considerations about this model system.
Section 3 deals with the model Hamiltonian and the relevant
thermodynamic functions. In section 4.1, the energy landscape
for the nanomagnetic system as a function of α is explored.
The variation of equilibrium angle, θ , with dimensionless
reduced magnetic field, h, for different α is demonstrated in
section 4.2. Section 5 deals with the variation of magnetization

and susceptibility with respect to ξ and T . Finally, the paper is
concluded in section 6.

2. Model and basic considerations

In this section, we discuss our model and some basic
considerations which one needs to study the thermodynamic
equilibrium properties of single-domain particles. Kittle has
shown that, below a critical size, domain wall formation is
energetically unfavourable [11]. These kinds of particles
are called single-domain particles. In the absence of an
external magnetic field, a bulk ferromagnet may have no net
magnetization due to the cancellation from different domains.
But a single domain particle acts as a giant magnetic moment
and the magnetic moment per particle depends on the particle
volume and the number of atoms it has. Throughout this
paper, we concentrate on the thermodynamic properties of a
collection of such monodomain particles which are dispersed
in a solid matrix [30, 31]. Further, we restrict our study
to mathematically tractable systems with axially symmetric
magneto-anisotropy. But it provides valuable insights into
more complex situations. All our considerations are based on
the Stoner–Wohlfarth model for single-domain particles [15].
In this model, all spins within the particle are aligned due to
exchange interaction and this is the dominating magnetostatic
effect within the particle. The giant magnetic moment direction
fluctuates, because the anisotropy energy is comparable to
thermal energy. The direction of the moment is determined
by the net anisotropy of the system and the energy is
minimized. This magnetization reversal process occurs by
coherent rotation, i.e. the atomic spins remain parallel to
each other as they rotate to a new direction [13, 14]. Here,
we are considering ideal monodomain particles in which
other more complex interactions both within the particles and
between the particles are neglected. Thus, our system has
only magnetocrystalline energy and Zeeman energy due to the
interaction with an external field.

Now, we need to specify the validity of this model,
especially in which temperature range it is valid. To specify
this temperature range, we follow the arguments given by
Garcı̀a-Palacios [20]. It has already been mentioned that
the thermal equilibrium behaviour of ideal monodomain
particles with uniaxial anisotropy is observed when tm �
τ . From equation (1), one can easily understand that
thermal equilibrium behaviour exists when the anisotropic
potential barrier, �Ea, is much larger than the thermal energy,
kBT . Besides, the ‘high barrier’ regime, equation (1), still
holds down to �Ea/kBT � 2. It is known that τ0 for
magnetic nanoparticles is ∼10−10–10−12 s. Thus, the thermal
equilibrium range for a given measurement time, tm, is given
by ln( tm

τ0
) > �Ea/kBT � 0. For magnetic measurements,

tm ∼ 1–100 s and the thermal equilibrium range is quite
wide 25 > �Ea/kBT � 0. So, the frequently encountered
statement that the thermal equilibrium behaviour occurs when
�Ea � kBT is needlessly constrictive. For example, if
tm = τ01012 (a typical value for magnetic measurements), one
finds that �Ea/kBT � 27.6. For �Ea/kBT = 25, one can
obtain τ = 0.08tm. Thus, the system is in thermal equilibrium,
but �Ea is still much larger than kBT [20].
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Figure 1. Coordinate system showing the unit vector along the
anisotropy axis, n̂, the external magnetic field vector, �B, and the
magnetic moment vector, �m, along with the angles α, θ and φ as
referred to in the text.

3. Hamiltonian and other relevant quantities

We consider a collection of non-interacting single-domain
magnetic particles. In a single-domain particle, nearly 105

magnetic moments are coherently locked together in a given
direction, thus yielding a supermoment. In this nanomagnetic
system, every particle consists of a single magnetic domain
with all its atomic moments rotating coherently and resulting
in a constant absolute value of magnetization m = msV ,
where V is the volume of the particle and ms is the
saturation magnetization which is supposed to be independent
of particle volume and temperature. In our system, the
Hamiltonian consists of two parts, one representing the
Zeeman energy and the other is the anisotropic energy (due
to the crystalline structure of the particle). For the sake of
simplicity, we consider a temperature-independent uniaxial
anisotropy. Denoting the external applied magnetic field as �B ,
the Hamiltonian is given by

H( �m) = − K V

m2
( �m · n̂)2 − �m · �B, (2)

where n̂ is a unit vector along the anisotropy axis, �m is the
magnetic moment of the single-domain particle and �B is the
direction of the external magnetic field, as shown in figure 1,
and K is the anisotropy constant. This model is valid only if
the exchange interaction strength of the system is much larger
than K and B . Now denoting (θ, φ) and (α, 0) as the angular
coordinates of �m and �B, respectively, and choosing n̂ as the
polar axis of the spherical polar coordinate system, one can
write the total magnetic potential in the form as follows:

− βH = σ cos2 θ + ξ‖ cos θ + ξ⊥ sin θ cos φ, (3)

where σ = K V
kBT , ξ‖ = ξ cos α, ξ⊥ = ξ sin α, ξ = mB

kB T , β =
1

kBT , kB is the Boltzmann constant and T is the temperature of
the system. One can rewrite equation (3) as follows:

Heff = −βH
σ

= cos2 θ + 2h(cos α cos θ + sin α sin θ cos φ),

(4)

with h = ξ

2σ
. Expressions for the magnetization curve where

anisotropy is included have been discussed by [18–21]. This
calculation is based on the theory of Hanson et al [18] and
Respaud [21]. For a uniaxial anisotropic nanomagnetic system,
the anisotropy energy depends only on the angle between the
magnetization and the direction of easy magnetization in the
particle, θ . In thermal equilibrium, the magnetization in the
direction of �m is proportional to the Boltzmann factor for a
fixed orientation of the easy axis:

f (m̂) = z−1 exp[σ(m̂ · n̂)2 + ξ(m̂ · ĥ)], (5)

where m̂, ĥ are the unit vectors along the direction of the
magnetic moment and the external magnetic field, and z is the
partition function defined by

z =
∫

exp[(m̂ · n̂)2 + 2h(m̂ · ĥ)]. (6)

Thus, we have

m̂ · ĥ = cos λ = sin α sin θ cos φ + cos α cos θ (7)

m̂ · n̂ = cos θ. (8)

Using the Boltzmann statistics, the expectation value of the
reduced magnetization with a given orientation of the easy axis
is given by

m(α) = M

ms
= 〈cos λ〉 =

∫ 2π

0 dφ
∫ π

0 cos λe−Heff sin θ dθ∫ 2π

0 dφ
∫ π

0 e−Heff sin θ dθ
.

(9)
None of the integrations in equation (9) is doable analytically.
However, equation (9) can be simplified by using the modified
Bessel functions and performing the analytic integration over
φ. Thus, the magnetization of such a collection of non-
interacting identical particles aligned with an angle α with
respect to B is given by

m(α) = N(α)

D(α)
, (10)

with

N(α) =
∫ π

0
dθ sin θ exp(2h cos λ + cos2 θ)

× [sin α sin θ I1(2h sin α sin θ)

+ cos α cos θ I0(2h sin α sin θ)], (11)

D(α) =
∫ π

0
dθ sin θ exp(2h cos λ + cos2 θ)

× I0(2h sin α sin θ), (12)

where I0 and I1 are the modified Bessel functions of order
0 and 1, respectively. Considering a random distribution of
anisotropy axes one can show

MB(h) = 1
2

∫ π

0
dα sin αm(α). (13)

However, there will be a distribution of particle sizes in any real
fine-particle system. The existence of particle size distribution
can be taken into account by taking an average over the full
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particle size distribution. Thus, the magnetization of such a
system with a distribution of particle sizes consists of the sum
of contributions from the superparamagnetic and the blocked
particles. The weightage of these two is maintained by the
size distribution function of the particles, f (y). Now, the
magnetization for this polydispersive system is given by

MPol =
∫ ysp

0
Msp(y, h) f (y) dy +

∫ ∞

ysp

MB(h) f (y) dy, (14)

where y is the reduced volume V
V0

with the mean volume V0 and

ysp = Vsp

V0
. Vsp is the critical volume for superparamagnetism

which is given by Vsp = 25kBT
K . Msp(y, h) and MB(h)

are the reduced magnetization for the superparamagnetic and
blocked particles, respectively. It is known that Msp(h, y) =
msL(2σ yh), where the Langevin function L(x) = coth(x)− 1

x .
Usually such an anisotropic nanomagnetic system follows a
log–normal distribution of particle size, i.e.

f (y) = 1√
2πγ y

exp
[

− (ln y)2

2γ 2

]
, (15)

where γ is the dispersion of the corresponding distribution.
For the numerical integration, we have used the following
parameters: γ = 0.8, V0 = exp(−γ 2/2), and average blocking
temperature, 〈TB〉 = 15.5 K, [32]. T is measured in units of
〈TB〉 and h is measured in units of ms B/K .

Numerical integration programs in FORTRAN are per-
formed to calculate the magnetization for the monodispersive
and the polydispersive system by using equations (13) and (14),
respectively. Static magnetic susceptibility of the polydisper-
sive system is defined as

χpol = ∂Mpol

∂ B
. (16)

Now, we have defined our system and other essential
thermodynamic functions. In the next two sections, we analyse
the thermodynamic behaviour of such a magneto-anisotropic
nanomagnetic system.

4. Energy barrier and equilibrium angle

In this section, we discuss the behaviour of the magnetic
potential energy as a function of several parameters used in
the Hamiltonian of the present nanomagnetic system. The
variation of equilibrium angle, θ , between the magnetic
moment and the easy axis of magnetization as a function of
h is also studied in this section.

4.1. Energy barrier

One can rewrite equation (4) as follows:

U(θ, φ) = β H (θ, φ)

σ
= sin2 θ − 2h

× (cos α cos θ + sin α sin θ cos φ), (17)

where β = 1
kBT . The stationary points for equation (17) occur

for φ = 0 and π . The stationary point for φ = π corresponds

to a maximum, so it is of no physical interest. On the other
hand, the stationary point φ = 0 corresponds to maxima at θm

and minima at θ1 and θ2. One can determine two equilibrium
directions of the magnetization associated with polar angles θ1

and θ2 (lying in the x–z plane) from the following condition:

∂U

∂θ
= 0,

∂2U

∂θ2
> 0, (18)

and the saddle point is determined by

∂U

∂θ
= 0,

∂2U

∂θ2
< 0. (19)

On the other hand, one can determine the critical value of the
ratio of field to barrier height (hc) at which the potential loses
its bistable character by using the following condition:

∂U

∂θ
= 0 = ∂2U

∂θ2
. (20)

Using equation (20), one can easily show that [33]

hc = 1
(
cos

2
3 α + sin

2
3 α

) 3
2

. (21)

One can rewrite equation (21) as follows:

(1 − h2
c)

3 − 27
4 h4

c sin2 2α = 0. (22)

It can be shown that |hc| lies in the range 0.5 � |hc| � 1.
hc = 1 occurs for α = 0 or π

2 , whereas hc = 1
2 can be

seen for α = π
4 . It is very unlikely that one can derive all

the derivatives and hence the barrier heights (B1 and B2) for
arbitrary α. It is easy to derive barrier heights and to know
the nature of the potential for some particular values of α. For
α = 0, B1 = σ(1+h)2 and B2 = σ(1−h)2. Thus the potential
has the asymmetric bistable form as shown in figure 2(a). On
the other hand, this asymmetric potential becomes symmetric
and the barrier height becomes B1 = B2 = σ(1 − h)2 for
α = π

2 , φ = 0 (see figure 2(c)). Again for α = π
4 , the potential

becomes asymmetric bistable below h = 0.5 (see figure 2(b))
and the barrier heights become [22]

B1 = 2σ

√
(1/2) − (h2/2) − h

√
(h2/4) + (1/2)

× (
√

(h2/4) + (1/2) − 3h/2)

and

B2 = B1/2 + σ

√
(1/2) − (h2/2) + h

√
(h2/4) + (1/2)

× (
√

(h2/4) + (1/2) + 3h/2).

For α = π , one can show that B1 = σ(1 − h)2 and B2 =
σ(1 + h)2 and is just the opposite of the case for α = 0 (see
figure 2(d)). In general the potential retains its asymmetric
bistable character for 0 < h < hc and α = π

2 .
It is evident from figure 2 that the potential energy of this

nanomagnetic system has two minima separated by a maxima
if and only if h is less than a certain critical value (hc) which
varies from 0.5 for α = π

4 to 1.0 for α = 0, π
2 . So, the

system consists of two potential barriers B1 and B2 which are,
in general, unequal except for the case of α = π

2 . If h > hc the
bistable character of the potential disappears and the system
has only a single maxima or a single minima. At h = hc, the
second minima becomes a point of inflection which is clearly
seen in figure 2.
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Figure 2. Energy is plotted against the angle θ for different cases with: (a) α = 0, φ = 0; h = 0.25 (black circle) and h = 1.1 (blue square);
(b) α = π

4 , φ = 0; h = 0.1 (black circle) and h = 0.6 (blue square); (c) α = π

2 , φ = 0; h = 0.7 (black circle) and h = 1.01 (blue square);
(d) α = π , φ = 0; h = 0.25 (black circle) and h = 1.1 (blue square).
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Figure 3. Plot of equilibrium angle, θ , versus h with φ = 0 and (a) α = 0 for θm, (b) α = π for θm, (c) α = π

2 ; for θ1 in black circle and θ2 in
blue square, (d) α = π

4 ; for θ1 in black circle, θm in blue square and θ2 in red triangle.

4.2. Equilibrium angle

Here, we are considering a collection of non-interacting
magnetic single-domain nanoparticles in the presence of an

external magnetic field. The variation of the equilibrium angle

between the anisotropy axis and the magnetic moment, θ ,

versus h for such a collection of non-interacting nanomagnetic
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systems is shown in figure 3. Now, using the maxima and
minima condition of U(θ, φ) as defined by equations (18)
and (19), one can obtain the equilibrium angle for the
magnetization direction in the x–z plane for some specific
values of α. Finally, the expression for the equilibrium angle θ

for φ = 0 under different orientations of α is as follows:

(i) for α = 0 and φ = 0:

θm = cos−1(−h), θ1,2 = 0, π (23)

i.e. U(θ, φ) has minima at θ1,2 = 0, π and maxima at
θm = cos−1(−h).

(ii) For α = π
4 and φ = 0, the minima of the potential are

at θ = θ1 = π
4 − sin−1(− h

2 +
√

h2+2
2 ); 0 � θ1 � π

12 and

at θ = θ2 = 5π
4 − sin−1( h

2 +
√

h2+2
2 ); 3π

4 � θ2 � π .
On the other hand, the magnetic potential has maxima at

θ = θm = π
4 + sin−1( h

2 +
√

h2+2
2 ); π

2 � θm � 3π
4 [33].

(iii) For α = π
2 and φ = 0, U(θ, φ) has minima at θ = θ1 =

sin−1(h) and θ = θ2 = π − sin−1(h) and maxima at
θ = θm = π

2 .
(iv) and finally for α = π and φ = 0 one can show that

minima of the magnetic potential are at θ = θ1,2 = 0, π

and maxima at θ = θm = cos−1(h).

In figure 3, we plot these solutions as a function of h.
Figure 3(a) shows that θm for α = 0; φ = 0 increases from
0 to 3.0 as h is altered from −1 to +1. On the other hand,
θm for α = π; φ = 0 decreases from 3.0 to 0 as h is varied
from −1 to +1 (see figure 3(b)). From figure 3(c), it is evident
that, as h is varied from −1 to +1, θ1 increases from −π

2 to
π
2 (black filled circle) and θ2 decreases from 3π

2 to π
2 (blue

filled square). It is seen from figure 3(d) that θ1 (black filled
circle) and θm (blue filled square) increases monotonically to a
maximum value of π

12 and 3π
4 , respectively, at h = 0.5; on the

other hand, θ2 decreases monotonically to a minimum value of
3π
4 at h = 0.5 (red filled triangle).

5. Magnetization and susceptibility

Magnetization and susceptibility are the most fundamental
thermodynamical quantities of non-interacting magnetic
nanoparticles with axially symmetric magnetic-anisotropy. In
this section, we analyse the variation of these two fundamental
quantities with temperature and externally applied magnetic
field. The differences and similarities of the magnetization
and susceptibility between the ideal superparamagnetic system
and a collection of non-interacting anisotropic monodomain
particles are presented here.

5.1. Magnetization

The magnetization along the direction of the external magnetic
field for classical spins with axially symmetric magnetic
anisotropy is defined by equation (13). We illustrate this
magnetization as a function of ξ using equation (13) for a
system of identical non-interacting monodomain particles for
different values of σ in figure 4. One can easily observe that
magnetization curves differ from the Langevin law in all cases.

M
B

ξ

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10

Figure 4. Reduced magnetization for the monodispersive system as a
function of ξ for various values of the anisotropy parameter, σ . The
black circle and blue square represent Langevin (σ = 0) and Ising
(σ � 1) cases, respectively. Green square and red upward triangle
represent magnetization curves for σ = 5.0 and σ = 2.0,
respectively.

As σ decreases, the difference vanishes and, with the increase
of σ , the magnetization curves become closer to the Ising
case. In the limits of high and low field, ξ , magnetization,
MB, approaches the Langevin value. The largest influence of
anisotropy can be observed in the intermediate-field regime.
This confirms the non-Langevin behaviour of a collection of
non-interacting magneto-anisotropic single-domain particles.
In figure 5, we show the variation of magnetization with
reduced temperature, Tr = T

〈TB〉 , for two different values of
h. Here 〈TB〉 is the average blocking temperature of the
system [34]. For convenience, we also plot the magnetization
curves for the Ising and Langevin cases. It is clear that
magnetization versus temperature curves for the anisotropic
magnetic nanoparticle system show a maximum near Tr =
1.0, unlike the Ising and Langevin cases. This maximum
can be interpreted as follows. From equation (14), one
can observe that Mpol has two parts, the superparamagnetic
contribution and the blocked particle contribution. As the
temperature increases the fraction of the superparamagnetic
contribution increases until the temperature reaches the
blocking temperature. Now, above this blocking temperature
at which the maximum in magnetization is observed, the
system usually becomes superparamagnetic and magnetization
decreases rapidly with the increase of temperature due to
thermal agitation. Thus, in equilibrium and for h < hc, one
can observe a maximum in magnetization for the polydisperse
magneto-anisotropic nanoparticle system. One can observe
that the maximum of the peak is not exactly at Tr = 1.0,
but with the increase of field it shifts to a lower relative
temperature, i.e. maxima are seen at Tr = 0.89 and at
Tr = 0.83 for h = 0.2 and h = 0.5, respectively. Also
one can notice that, as the field increases, the peak becomes
broader.
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Figure 5. Reduced magnetization along the external field axis for a collection of non-interacting, monodomain and polydispersive
nanoparticles as a function of reduced temperature. The black circle, blue square and pink upward triangle represent Langevin, Ising and
magneto-anisotropic cases, respectively: (a) h = 0.2 and (b) h = 0.5.
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5.2. Susceptibility

In order to demonstrate the effect of magnetocrystalline
anisotropy on the thermodynamical quantities, we demon-
strate the behaviour of susceptibility of the non-interacting
nanoparticles in the presence of an external magnetic field.
We plot the susceptibility and inverse susceptibility curves
with respect to temperature for different orientations in α

between the anisotropy axis and external field in figures 6
and 7, respectively. Again, susceptibility shows a maximum
at finite temperatures (Tr = 0.89 and Tr = 0.83) for
h = 0.2 and h = 0.5, respectively. Also, as the field
increases the peak of the susceptibility curves becomes more
broad. In order to demonstrate the effect of magnetocrystalline
anisotropy, we illustrate the behaviour of inverse susceptibility
of the non-interacting nanoparticles with reduced temperature
in the presence of an external magnetic field for different
orientations of α between the anisotropy axis and external

field in figure 7. For α = 0, φ = 0 (in black circle),
one observes a susceptibility curve resembling a system with
ferromagnetic-like interaction and it follows the Curie–Weiss
law. The same kind of ferromagnetic-like coupling is prevalent
for α = π

15 (orange square) and for α = π
10 (pink upward

triangle). This means the zero crossing at the temperature
axis occurs at positive values. When the angle between the
anisotropy axis and magnetic field is α = π

4 (red downward
triangle), the system resembles paramagnetic behaviour and
it follows the simple Curie law. However, for α = π

2 (blue
diamond) and for α = π

3 (green filled square), a Curie–Weiss
antiferromagnetic-like behaviour is observed. By extrapolating
one can observe the zero crossing on the temperature axis at
negative values. Thus, the extrapolating transition temperature
continuously changes from positive values to negative values.
From this kind of observation, one can conclude that the
anisotropy field acts as a ferromagnetic-, antiferromagnetic- or
paramagnetic-like coupling among the magnetic nanoparticles,

7
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depending on the relative angle between the anisotropy axis
and the external field. The net effect of the anisotropy field
resembles a continuous transition from a ferromagnetic- to an
antiferromagnetic-like coupling.

6. Conclusions

In conclusion, we have confirmed that a collection of non-
interacting magneto-anisotropic particles cannot be described
with the help of the classical Langevin theory, i.e.
their thermodynamic equilibrium magnetization and static
magnetic susceptibility cannot be described by the Langevin
function and its derivative. This deviation is due
to the presence of magnetocrystalline anisotropy. The
effect of magnetocrystalline anisotropy is explored through
magnetization curves and susceptibility curves. The variation
of inverse susceptibility with temperature shows paramagnetic,
ferromagnetic and antiferromagnetic coupling behaviour for
different orientations of α. We also present a mechanical
analogy for a system in 3D as a frictionless particle moving on
a sphere rotating about its vertical diameter. This study reveals
the essential role of the magnetocrystalline anisotropy energy
in interpreting equilibrium magnetization and susceptibility of
a collection of non-interacting single-domain nanomagnetic
particles.

Appendix

In this appendix, we discuss the mechanical isomorph of the
nanomagnetic system. We consider a rigid sphere of radius
Rs rotating along its vertical diameter at angular frequency
ω with a frictionless particle of mass M free to move on
the surface of the sphere as shown in figure A.1. In the
rotating coordinate frame (r, θ, φ) attached to the rigid sphere,
in addition to the gravitational force on the mass M �ga =
Mga cos θ êr − Mga sin θ êθ , a fictitious centrifugal force �f is
acting on the particle and is given by �f = Mω2r sin2 θ êr +
Mω2r sin θ cos θ êθ . An external field �F is acting on the

Figure A.1. Mechanical rotating system analogous to the
nanomagnetic system.

azimuthal plane such that �F = F sin φêφ . Now, the kinetic
energy of the particle is given by

T = 1
2 M(ṙ 2 + r 2θ̇2 + r 2 sin2 θφ̇2). (24)

The potential energy of the particle consists of three parts
U = Uga +Uc+Ue, where Uga is coming from the gravitational
force field part, Uc is the fictitious centrifugal part and Ue is the
external field part. Now, one can easily find out the three parts
of the effective potential energy as follows:

Uga = −Mga Rs cos θ

Uc = 1
2 Mω2 R2

s cos2 θ − 1
4 Mω2 R2

s

Ue = F Rs sin θ cos φ.

(25)

Thus the Lagrangian of the system becomes

L = 1
2 M(ṙ 2 + r 2θ̇2 + r 2 sin2 θφ̇2) + Mga Rs cos θ

+ 1
4 Mω2 R2

s − 1
2 Mω2 cos2 θ − F Rs sin θ cos φ. (26)

Now, the effective potential energy which includes the effect of
gravity, rotation of the system and the external field force �F is
given by

u = U

Mga Rs
= − cos θ − ω2 Rs

4ga

+ ω2 Rs

2ga
cos2 θ + F

Mga
sin θ cos φ. (27)

Comparing equations (3) and (27) one can easily understand
the analogy between the mechanical system and the magnetic
nanoparticle system. The centripetal acceleration plays the role
of the magnetic anisotropy, whereas the combined effect of
the external field �F and the gravity field is equivalent to the
external magnetic field.
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[13] Néel L 1949 Ann. Geophys. 5 99
[14] Brown W F Jr 1963 Phys. Rev. 130 1677
[15] Stoner E C and Wohlfarth E P 1948 Phil. Trans. R. Soc.

240 599
Stoner E C and Wohlfarth E P 1991 IEEE Trans. Magn.

27 3475
[16] West F G 1961 J. Appl. Phys. 30 249s
[17] Müller K and Thurley F 1973 Int. J. Magn. 5 203
[18] Hanson M, Johansson C and Mørup S 1993 J. Phys.: Condens.

Matter 5 725
[19] Williams H D, O’Grady K, Hilo M E and Chantrell R W 1993

J. Magn. Magn. Mater. 122 129

[20] Garcı́a-Palacios J L 2000 Advances in Chemical Physics
vol 112 ed I Priogogine and S A Rice (New York: Wiley) p 1

[21] Respaud M 1999 J. Appl. Phys. 86 556
[22] Pfeiffer H 1990 Phys. Status Solidi a 122 377
[23] Pfeiffer H 1990 Phys. Status Solidi a 120 233
[24] Madsen D E, Mørup S and Hansen M F 2006 J. Magn. Magn.

Mater. 305 95
[25] Vargas P, Altbir D, Knobel M and Laroze D 2002 Europhys.

Lett. 58 603
[26] Vargas P and Laroze D 2004 J. Magn. Magn. Mater. 272 e1345
[27] Wiekhorst F, Shevchenko E, Weller H and Kötzler J 2003 Phys.
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